NOTICE
Open WebUI Community is currently undergoing a major revamp to improve user experience and performance ✨

Tool
v1.0
Autogen Studio Tool
DOES NOT WORK WITH OWUI 0.5.X - The AutoGen tool provides a mixture of agent capability to solve complex problems (CUSTOMISE DOCSTRING TO SUIT THE WORKFLOW)
Tool ID
autogen_studio_tool
Creator
@matthewh
Downloads
341+

Tool Content
python
"""
title: Autogen Studio Tool
author: matthewh
version: 1.0
required_open_webui_version: 0.3.9

Instructions:

1. Install and run AutoGen Studio:
   ```bash
   pip install autogenstudio flaml[automl] matplotlib
   autogenstudio ui --port=8081 --docs --host=0.0.0.0 --workers=2
   ```

2. Export the workflow and serve it as an endpoint:
   ```bash
   autogenstudio serve --workflow=workflow.json --port=8082 --host=0.0.0.0 --docs --workers=2
   ```

3. Use http://localhost:8082/docs to interact with the endpoint.

4. This tool sends a query to the AutoGen API and displays the response correctly in the chat.
"""

import os
import requests
import urllib.parse
from typing import Optional, Dict  # Ensure Dict is imported
from pydantic import BaseModel, Field


class Tools:
    """
    Tools class to house the AutoGen tool functions, compatible with Open WebUI.
    """

    class Valves(BaseModel):
        """
        Configurable parameters (valves) for the AutoGen tool.
        """

        AUTOGEN_BASE_URL: str = Field(
            default=os.getenv(
                "AUTOGEN_BASE_URL", "http://host.docker.internal:8082/predict"
            ),
            description="Base URL for the AutoGen endpoint.",
        )
        request_timeout: int = Field(
            default=300, description="Timeout for the HTTP request (in seconds)."
        )
        debug: bool = Field(
            default=False, description="Enable or disable debug logging."
        )

    def __init__(self):
        self.valves = self.Valves()

    def autogen_tool(self, query: str) -> Dict[str, str]:
        """
        AutoGen tool that performs a query using the AutoGen API.
        :param query: User’s input query.
        :return: A dictionary to return a formatted response for the LLM.
        """
        if self.valves.debug:
            print(f"[DEBUG] Starting tool with query: {query}")

        encoded_prompt = urllib.parse.quote(query, safe="")
        url = f"{self.valves.AUTOGEN_BASE_URL}/{encoded_prompt}"
        headers = {"Accept": "application/json"}
        timeout = self.valves.request_timeout

        if self.valves.debug:
            print(f"[DEBUG] Sending request to {url}")

        try:
            response = requests.get(url, headers=headers, timeout=timeout)
            response.raise_for_status()

            data = response.json()
            if self.valves.debug:
                print(f"[DEBUG] Response data: {data}")

            # Format the response as an LLM-friendly prompt
            if isinstance(data, dict) and "response" in data:
                message = data["response"]
                formatted_message = (
                    f"Provide the following response to the user:\n"
                    f"```autogen\n{message}\n```"
                )
                return {"content": formatted_message}

            return {"content": "Unexpected response format."}

        except Exception as e:
            error_message = f"Error during request: {str(e)}"
            if self.valves.debug:
                print(f"[DEBUG] {error_message}")
            return {"content": error_message}


# # Example usage for local testing
# if __name__ == "__main__":
#     tools = Tools()  # Initialize without custom valves
#     query = "example query"
#     result = tools.autogen_tool(query)
#     print(result["content"])