NOTICE
Open WebUI Community is currently undergoing a major revamp to improve user experience and performance ✨

Tool
v0.4.0
yahoo finance
A comprehensive stock and cryptocurrency analysis tool using Yahoo Finance data, including historical price analysis.
Tool ID
yahoo_finance
Creator
@johnthellm
Downloads
1.1K+

Tool Content
python
"""
title: Yahoo Finance Stock and Crypto Analyzer with Historical Data
description: A comprehensive stock and cryptocurrency analysis tool using Yahoo Finance data, including historical price analysis and AI news sentiment.
author: AI Assistant
author_url: https://github.com/johnongit
funding_url: https://github.com/open-webui
version: 0.4.0
license: MIT
requirements: yfinance, pandas, numpy, aiohttp, asyncio, transformers
"""

import yfinance as yf
import pandas as pd
import numpy as np
import aiohttp
import asyncio
from transformers import pipeline
from pydantic import BaseModel
from typing import Dict, Any, List, Union, Callable, Awaitable
from functools import lru_cache

# Helper functions


@lru_cache(maxsize=128)
def _get_sentiment_model():
    return pipeline("sentiment-analysis", model="ProsusAI/finbert")


async def _async_sentiment_analysis(
    content: str, model
) -> Dict[str, Union[str, float]]:
    result = model(content)[0]
    return {"sentiment": result["label"], "confidence": result["score"]}


# Main functions


def _get_asset_info(ticker: str) -> Dict[str, Any]:
    asset = yf.Ticker(ticker)
    info = asset.info

    if info.get("quoteType") == "CRYPTOCURRENCY":
        return {
            "name": info.get("name", "N/A"),
            "symbol": info.get("symbol", "N/A"),
            "market_cap": info.get("marketCap", 0),
            "circulating_supply": info.get("circulatingSupply", 0),
            "max_supply": info.get("maxSupply", 0),
            "24h_volume": info.get("volume24Hr", 0),
            "7d_change": info.get("sevenDayAvgChangePercent", 0),
            "is_crypto": True,
        }
    else:
        return {
            "name": info.get("longName", "N/A"),
            "symbol": info.get("symbol", "N/A"),
            "sector": info.get("sector", "N/A"),
            "industry": info.get("industry", "N/A"),
            "market_cap": info.get("marketCap", 0),
            "pe_ratio": info.get("trailingPE", 0),
            "dividend_yield": info.get("dividendYield", 0),
            "beta": info.get("beta", 0),
            "52_week_high": info.get("fiftyTwoWeekHigh", 0),
            "52_week_low": info.get("fiftyTwoWeekLow", 0),
            "is_crypto": False,
        }


def _get_current_price(ticker: str) -> Dict[str, float]:
    asset = yf.Ticker(ticker)
    data = asset.history(period="1d")
    return {
        "current_price": data["Close"].iloc[-1],
        "open": data["Open"].iloc[-1],
        "high": data["High"].iloc[-1],
        "low": data["Low"].iloc[-1],
        "volume": data["Volume"].iloc[-1],
    }


def _get_asset_news(ticker: str) -> List[Dict[str, Any]]:
    asset = yf.Ticker(ticker)
    news = asset.news

    formatted_news = []
    for item in news:
        formatted_item = {
            "title": item["title"],
            "publisher": item["publisher"],
            "link": item["link"],
            "published_time": item["providerPublishTime"],
            "summary": item.get("summary", "No summary available."),
        }
        formatted_news.append(formatted_item)

    return formatted_news


def _get_historical_data(ticker: str, period: str = "1y") -> pd.DataFrame:
    asset = yf.Ticker(ticker)
    history = asset.history(period=period)
    return history


def _analyze_historical_data(df: pd.DataFrame) -> Dict[str, Any]:
    analysis = {}

    # Calculate simple moving averages
    df["SMA50"] = df["Close"].rolling(window=50).mean()
    df["SMA200"] = df["Close"].rolling(window=200).mean()

    # Calculate price change and volatility
    df["Daily_Return"] = df["Close"].pct_change()

    analysis["price_change"] = (df["Close"].iloc[-1] / df["Close"].iloc[0] - 1) * 100
    analysis["volatility"] = (
        df["Daily_Return"].std() * np.sqrt(252) * 100
    )  # Annualized volatility

    # Trend analysis
    current_price = df["Close"].iloc[-1]
    analysis["trend_sma50"] = (
        "Bullish" if current_price > df["SMA50"].iloc[-1] else "Bearish"
    )
    analysis["trend_sma200"] = (
        "Bullish" if current_price > df["SMA200"].iloc[-1] else "Bearish"
    )

    # Highest and lowest prices
    analysis["highest_price"] = df["High"].max()
    analysis["lowest_price"] = df["Low"].min()

    # Average volume
    analysis["avg_volume"] = df["Volume"].mean()

    return analysis


async def _async_gather_asset_data(ticker: str) -> Dict[str, Any]:
    asset_info = _get_asset_info(ticker)
    current_price = _get_current_price(ticker)
    news_items = _get_asset_news(ticker)
    historical_data = _get_historical_data(ticker)
    historical_analysis = _analyze_historical_data(historical_data)

    model = _get_sentiment_model()
    sentiment_tasks = [
        _async_sentiment_analysis(item["title"], model) for item in news_items
    ]
    sentiments = await asyncio.gather(*sentiment_tasks)

    sentiment_results = [
        {
            "title": news_items[i]["title"],
            "publisher": news_items[i]["publisher"],
            "link": news_items[i]["link"],
            "published_time": news_items[i]["published_time"],
            "sentiment": sentiment["sentiment"],
            "confidence": sentiment["confidence"],
        }
        for i, sentiment in enumerate(sentiments)
    ]

    return {
        "asset_info": asset_info,
        "current_price": current_price,
        "sentiments": sentiment_results,
        "historical_analysis": historical_analysis,
    }


def _get_rsi_macd(symbol="BTC-USD", period="1mo", interval="1d"):
    ticker = yf.Ticker(symbol)
    data = ticker.history(period=period, interval=interval)
    close_prices = data["Close"]

    # Calculate RSI
    delta = close_prices.diff()
    gain = delta.where(delta > 0, 0)
    loss = -delta.where(delta < 0, 0)
    avg_gain = gain.rolling(window=14).mean()
    avg_loss = loss.rolling(window=14).mean()
    rs = avg_gain / avg_loss
    rsi = 100 - (100 / (1 + rs))

    # Calculate MACD
    ema_12 = close_prices.ewm(span=12, adjust=False).mean()
    ema_26 = close_prices.ewm(span=26, adjust=False).mean()
    macd_line = ema_12 - ema_26
    signal_line = macd_line.ewm(span=9, adjust=False).mean()
    macd_hist = macd_line - signal_line

    # Format output
    output = f"Results for {symbol} over period {period} with interval {interval}:\n\n"
    output += f"Latest RSI: {rsi.iloc[-1]:.2f}\n"
    output += f"Latest MACD: {macd_line.iloc[-1]:.2f}\n"
    output += f"Latest MACD Signal: {signal_line.iloc[-1]:.2f}\n"
    output += f"Latest MACD Histogram: {macd_hist.iloc[-1]:.2f}\n\n"
    output += "RSI Evolution:\n"
    output += f"{rsi.tail(10).to_string(header=False)}\n\n"
    output += "MACD Evolution:\n"
    output_df = pd.DataFrame(
        {"MACD": macd_line, "Signal": signal_line, "Histogram": macd_hist},
        index=macd_line.index,
    )
    output += f"{output_df.tail(10).to_string(index=True)}"

    return output


def _compile_report(
    data: Dict[str, Any], price_history: pd.DataFrame, tech_data: str
) -> str:
    info = data["asset_info"]
    price = data["current_price"]
    historical = data["historical_analysis"]

    if info["is_crypto"]:
        report = """
        Cryptocurrency Analysis Report for {name} ({symbol})

        Basic Information:
        Market Cap: ${market_cap:,.0f}
        Circulating Supply: {circulating_supply:,.0f}

        Current Trading Information:
        Current Price: ${current_price:.2f}
        24h Range: ${low:.2f} - ${high:.2f}
        24h Volume: {volume:,.0f}

        Historical Analysis:
        Price Change (1 year): {price_change:.2f}%
        Annualized Volatility: {volatility:.2f}%
        50-day SMA Trend: {trend_sma50}
        200-day SMA Trend: {trend_sma200}
        Highest Price (1 year): ${highest_price:.2f}
        Lowest Price (1 year): ${lowest_price:.2f}
        Average Daily Volume: {avg_volume:,.0f}
        Price history: {price_history}
        Technical data: {tech_data}
        """.format(
            name=info["name"],
            symbol=info["symbol"],
            market_cap=info["market_cap"],
            circulating_supply=info["circulating_supply"],
            current_price=price["current_price"],
            low=price["low"],
            high=price["high"],
            volume=price["volume"],
            price_change=historical["price_change"],
            volatility=historical["volatility"],
            trend_sma50=historical["trend_sma50"],
            trend_sma200=historical["trend_sma200"],
            highest_price=historical["highest_price"],
            lowest_price=historical["lowest_price"],
            avg_volume=historical["avg_volume"],
            price_history=price_history.to_string(),
            tech_data=tech_data,
        )
    else:
        report = """
        Stock Analysis Report for {name} ({symbol})

        Basic Information:
        Sector: {sector}
        Industry: {industry}
        Market Cap: ${market_cap:,.0f}

        Current Trading Information:
        Current Price: ${current_price:.2f}
        Day's Range: ${low:.2f} - ${high:.2f}
        Volume: {volume:,.0f}

        Key Financial Metrics:
        P/E Ratio: {pe_ratio}
        Dividend Yield: {dividend_yield:.2%}
        Beta: {beta}
        52 Week Range: ${week_low:.2f} - ${week_high:.2f}

        Historical Analysis:
        Price Change (1 year): {price_change:.2f}%
        Annualized Volatility: {volatility:.2f}%
        50-day SMA Trend: {trend_sma50}
        200-day SMA Trend: {trend_sma200}
        Highest Price (1 year): ${highest_price:.2f}
        Lowest Price (1 year): ${lowest_price:.2f}
        Average Daily Volume: {avg_volume:,.0f}

        """.format(
            name=info["name"],
            symbol=info["symbol"],
            sector=info["sector"],
            industry=info["industry"],
            market_cap=info["market_cap"],
            current_price=price["current_price"],
            low=price["low"],
            high=price["high"],
            volume=price["volume"],
            pe_ratio=info["pe_ratio"],
            dividend_yield=info["dividend_yield"],
            beta=info["beta"],
            week_low=info["52_week_low"],
            week_high=info["52_week_high"],
            price_change=historical["price_change"],
            volatility=historical["volatility"],
            trend_sma50=historical["trend_sma50"],
            trend_sma200=historical["trend_sma200"],
            highest_price=historical["highest_price"],
            lowest_price=historical["lowest_price"],
            avg_volume=historical["avg_volume"],
        )

    report += "Recent News and Sentiment Analysis:\n"
    for item in data["sentiments"]:
        report += """
        Title: {title}
        Publisher: {publisher}
        Link: {url}
        Published Time: {published_time}
        Sentiment: {sentiment} (Confidence: {confidence:.2f})

        """.format(
            title=item["title"],
            publisher=item["publisher"],
            url=item["link"],
            published_time=item["published_time"],
            sentiment=item["sentiment"],
            confidence=item["confidence"],
        )
    print("report")
    print(report)
    return report


class Tools:
    class UserValves(BaseModel):
        pass

    def __init__(self):
        pass

    async def analyze_asset(
        self,
        ticker: str,
        __user__: dict = {},
        __event_emitter__: Callable[[Any], Awaitable[None]] = None,
    ) -> str:
        """
        Perform a comprehensive analysis and compile a detailed report for a given stock or cryptocurrency ticker using Yahoo Finance data.

        :param ticker: The asset ticker symbol (e.g., "AAPL" for Apple Inc. or "BTC-USD" for Bitcoin).
        :return: A comprehensive analysis report of the asset as a formatted string.
        """
        await __event_emitter__(
            {
                "type": "status",
                "data": {"description": "Initializing analysis", "done": False},
            }
        )

        await __event_emitter__(
            {
                "type": "status",
                "data": {"description": "Retrieving asset data", "done": False},
            }
        )
        price_history = _get_historical_data(ticker)
        tech_data = _get_rsi_macd(ticker)

        data = await _async_gather_asset_data(ticker)

        await __event_emitter__(
            {
                "type": "status",
                "data": {"description": "Compiling asset report", "done": False},
            }
        )
        report = _compile_report(data, price_history, tech_data)

        last_price = data["current_price"]["current_price"]
        asset_type = "cryptocurrency" if data["asset_info"]["is_crypto"] else "stock"
        await __event_emitter__(
            {
                "type": "status",
                "data": {
                    "description": "Finished creating report for {0} - latest price: ${1:.4f}".format(
                        asset_type,
                        last_price,
                    ),
                    "done": True,
                },
            }
        )
        return report