NOTICE
Open WebUI Community is currently undergoing a major revamp to improve user experience and performance ✨

Function
filter
v1.0
MoEA
Mixture of Expert Agents
Function ID
moea
Creator
@techelpr
Downloads
1.1K+

Function Content
python
"""
title: Mixture of Expert Agents
author: techelpr
version: 1.0
required_open_webui_version: 0.3.9
"""

from pydantic import BaseModel, Field
from typing import Optional, List
import requests
import json


class Filter:

    class Valves(BaseModel):
        """
        Define the default values for each valve.
        """

        models: List[str] = Field(
            default=[], description="List of models to use in the MoEA architecture."
        )
        openai_api_base: str = Field(
            default="http://host.docker.internal:11434/v1",
            description="Base URL for Ollama API.",
        )
        num_layers: int = Field(default=1, description="Number of MoEA layers.")

    def __init__(self):
        """
        Initialize the Filter object.
        """
        self.valves = self.Valves()

    # Function: Inlet
    # Description: Processes incoming messages and applies the Multi-Agent architecture.
    def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
        """
        Process incoming messages and apply the Multi-Agent architecture.

        Args:
            body (dict): The message to be processed.
            user (Optional[dict], optional): User information. Defaults to None.

        Returns:
            dict: The processed message.
        """
        messages = body.get("messages", [])
        if messages:
            last_message = messages[-1]["content"]
            moa_response = self.moa_process(last_message)
            body["messages"][-1]["content"] = moa_response
        return body

    # Function: Agent Prompt
    # Description: Create a prompt for the agents and the aggregator.
    def agent_prompt(self, original_prompt: str, previous_responses: List[str]) -> str:
        """
        Create a prompt for the agents and the aggregator.

        Args:
            original_prompt (str): The original prompt.
            previous_responses (List[str]): Previous responses from agents.

        Returns:
            str: The prompt for the agent or aggregator.
        """
        return f"*Internal Thoughts:* \n{previous_responses}\n\n*Prompt:* \n{original_prompt}"

    # Function: MoA Process
    # Description: Applies the Multi-Agent architecture to a given prompt.
    def moa_process(self, prompt: str) -> str:
        layer_outputs = []
        if not self.valves.models or not self.valves.openai_api_base:
            return "Error: Required valve(s) not set."
        for layer in range(self.valves.num_layers):
            current_layer_outputs = []
            layer_agents = self.valves.models
            for agent in layer_agents:
                if layer == 0:
                    instruct_prompt = prompt
                else:
                    instruct_prompt = self.agent_prompt(prompt, layer_outputs[-1])
                response = self.query_ollama(agent, instruct_prompt)
                current_layer_outputs.append(response)
            layer_outputs.append(current_layer_outputs)

        # Simplify agent prompts and combine responses into a single dataset
        merged_responses = []
        for layer_responses in layer_outputs:
            merged_responses.extend(layer_responses)

        # Create a final response for the requesting model
        final_prompt = "*Guiding Principles:*\n"
        final_prompt += "Consider each internal thought as a potential piece of information to incorporate into my response.\n"
        final_prompt += "The internal thoughts provided are for your use only, and should never be referenced explicitly or mentioned in your response, unless directed by the prompt.\n"
        final_prompt += "My goal is to provide a complete and detailed reply that addresses the original prompt and incorporates relevant information in a seamless manner.\n\n"
        final_prompt += self.agent_prompt(prompt, merged_responses)
        return final_prompt

    # Function: Query Ollama
    # Description: Queries the Ollama API for a given model and prompt.
    def query_ollama(self, model: str, prompt: str) -> str:
        """
        Query the Ollama API for a given model and prompt.

        Args:
            model (str): The model to query.
            prompt (str): The prompt to be queried.

        Returns:
            str: The response from the Ollama API.
        """
        try:
            url = f"{self.valves.openai_api_base}/chat/completions"
            headers = {"Content-Type": "application/json"}
            data = {"model": model, "messages": [{"role": "user", "content": prompt}]}
            response = requests.post(url, headers=headers, data=json.dumps(data))
            response.raise_for_status()
            return response.json()["choices"][0]["message"]["content"]
        except requests.exceptions.RequestException as e:
            return f"Error: Unable to query model {model}"