Whitepaper
Docs
Sign In
Function
Function
filter
v2.5.0
Time Token Tracker
Function ID
time_token_tracker
Creator
@owndev
Downloads
6.8K+
A filter for tracking the response time and token usage of a request.
Get
README
Function Code
Show
""" title: Time Token Tracker author: owndev author_url: https://github.com/owndev/ project_url: https://github.com/owndev/Open-WebUI-Functions funding_url: https://github.com/sponsors/owndev version: 2.5.0 license: Apache License 2.0 description: A filter for tracking the response time and token usage of a request with Azure Log Analytics integration. features: - Tracks the response time of a request. - Tracks Token Usage. - Calculates the average tokens per message. - Calculates the tokens per second. - Sends metrics to Azure Log Analytics. """ import time import json import uuid import hmac import base64 import hashlib import datetime import os import logging import aiohttp from typing import Optional, Any from open_webui.env import AIOHTTP_CLIENT_TIMEOUT, SRC_LOG_LEVELS from cryptography.fernet import Fernet, InvalidToken import tiktoken from pydantic import BaseModel, Field, GetCoreSchemaHandler from pydantic_core import core_schema # Global variables to track start time and token counts global start_time, request_token_count, response_token_count start_time = 0 request_token_count = 0 response_token_count = 0 # Simplified encryption implementation with automatic handling class EncryptedStr(str): """A string type that automatically handles encryption/decryption""" @classmethod def _get_encryption_key(cls) -> Optional[bytes]: """ Generate encryption key from WEBUI_SECRET_KEY if available Returns None if no key is configured """ secret = os.getenv("WEBUI_SECRET_KEY") if not secret: return None hashed_key = hashlib.sha256(secret.encode()).digest() return base64.urlsafe_b64encode(hashed_key) @classmethod def encrypt(cls, value: str) -> str: """ Encrypt a string value if a key is available Returns the original value if no key is available """ if not value or value.startswith("encrypted:"): return value key = cls._get_encryption_key() if not key: # No encryption if no key return value f = Fernet(key) encrypted = f.encrypt(value.encode()) return f"encrypted:{encrypted.decode()}" @classmethod def decrypt(cls, value: str) -> str: """ Decrypt an encrypted string value if a key is available Returns the original value if no key is available or decryption fails """ if not value or not value.startswith("encrypted:"): return value key = cls._get_encryption_key() if not key: # No decryption if no key return value[len("encrypted:") :] # Return without prefix try: encrypted_part = value[len("encrypted:") :] f = Fernet(key) decrypted = f.decrypt(encrypted_part.encode()) return decrypted.decode() except (InvalidToken, Exception): return value # Pydantic integration @classmethod def __get_pydantic_core_schema__( cls, _source_type: Any, _handler: GetCoreSchemaHandler ) -> core_schema.CoreSchema: return core_schema.union_schema( [ core_schema.is_instance_schema(cls), core_schema.chain_schema( [ core_schema.str_schema(), core_schema.no_info_plain_validator_function( lambda value: cls(cls.encrypt(value) if value else value) ), ] ), ], serialization=core_schema.plain_serializer_function_ser_schema( lambda instance: str(instance) ), ) def get_decrypted(self) -> str: """Get the decrypted value""" return self.decrypt(self) # Helper functions async def cleanup_response( response: Optional[aiohttp.ClientResponse], session: Optional[aiohttp.ClientSession], ) -> None: """ Clean up the response and session objects. Args: response: The ClientResponse object to close session: The ClientSession object to close """ if response: response.close() if session: await session.close() class Filter: class Valves(BaseModel): priority: int = Field( default=0, description="Priority level for the filter operations." ) CALCULATE_ALL_MESSAGES: bool = Field( default=True, description="If true, calculate tokens for all messages. If false, only use the last user and assistant messages.", ) SHOW_AVERAGE_TOKENS: bool = Field( default=True, description="Show average tokens per message (only used if CALCULATE_ALL_MESSAGES is true).", ) SHOW_RESPONSE_TIME: bool = Field( default=True, description="Show the response time." ) SHOW_TOKEN_COUNT: bool = Field( default=True, description="Show the token count." ) SHOW_TOKENS_PER_SECOND: bool = Field( default=True, description="Show tokens per second for the response." ) SEND_TO_LOG_ANALYTICS: bool = Field( default=bool(os.getenv("SEND_TO_LOG_ANALYTICS", False)), description="Send logs to Azure Log Analytics workspace" ) LOG_ANALYTICS_WORKSPACE_ID: str = Field( default=os.getenv("LOG_ANALYTICS_WORKSPACE_ID", ""), description="Azure Log Analytics Workspace ID" ) LOG_ANALYTICS_SHARED_KEY: EncryptedStr = Field( default=os.getenv("LOG_ANALYTICS_SHARED_KEY", ""), description="Azure Log Analytics Workspace Shared Key" ) LOG_ANALYTICS_LOG_TYPE: str = Field( default="OpenWebuiMetrics", description="Log Analytics log type name." ) def __init__(self): self.name = "Time Token Tracker" self.valves = self.Valves() def _build_signature(self, date, content_length, method, content_type, resource): """Build the signature for Log Analytics authentication.""" x_headers = "x-ms-date:" + date string_to_hash = ( method + "\n" + str(content_length) + "\n" + content_type + "\n" + x_headers + "\n" + resource ) bytes_to_hash = string_to_hash.encode("utf-8") decoded_key = base64.b64decode(self.valves.LOG_ANALYTICS_SHARED_KEY.get_decrypted()) encoded_hash = base64.b64encode( hmac.new(decoded_key, bytes_to_hash, digestmod=hashlib.sha256).digest() ).decode("utf-8") authorization = ( f"SharedKey {self.valves.LOG_ANALYTICS_WORKSPACE_ID}:{encoded_hash}" ) return authorization async def _send_to_log_analytics_async(self, data): """Send data to Azure Log Analytics asynchronously using aiohttp.""" if ( not self.valves.SEND_TO_LOG_ANALYTICS or not self.valves.LOG_ANALYTICS_WORKSPACE_ID or not self.valves.LOG_ANALYTICS_SHARED_KEY ): return False log = logging.getLogger("time_token_tracker._send_to_log_analytics_async") log.setLevel(SRC_LOG_LEVELS["OPENAI"]) method = "POST" content_type = "application/json" resource = "/api/logs" rfc1123date = datetime.datetime.now(datetime.timezone.utc).strftime("%a, %d %b %Y %H:%M:%S GMT") content_length = len(json.dumps(data)) signature = self._build_signature( rfc1123date, content_length, method, content_type, resource ) uri = f"https://{self.valves.LOG_ANALYTICS_WORKSPACE_ID}.ods.opinsights.azure.com{resource}?api-version=2016-04-01" headers = { "Content-Type": content_type, "Authorization": signature, "Log-Type": self.valves.LOG_ANALYTICS_LOG_TYPE, "x-ms-date": rfc1123date, "time-generated-field": "timestamp", } session = None response = None try: session = aiohttp.ClientSession( trust_env=True, timeout=aiohttp.ClientTimeout(total=AIOHTTP_CLIENT_TIMEOUT), ) response = await session.request( method="POST", url=uri, json=data, headers=headers, ) if response.status == 200: return True else: response_text = await response.text() log.error( f"Error sending to Log Analytics: {response.status} - {response_text}" ) return False except Exception as e: log.error(f"Exception when sending to Log Analytics asynchronously: {str(e)}") return False finally: await cleanup_response(response, session) async def inlet( self, body: dict, __user__: Optional[dict] = None, __event_emitter__=None ) -> dict: global start_time, request_token_count start_time = time.time() model = body.get("model", "default-model") all_messages = body.get("messages", []) try: encoding = tiktoken.encoding_for_model(model) except KeyError: encoding = tiktoken.get_encoding("cl100k_base") # If CALCULATE_ALL_MESSAGES is true, use all "user" and "system" messages if self.valves.CALCULATE_ALL_MESSAGES: request_messages = [ m for m in all_messages if m.get("role") in ("user", "system") ] else: # If CALCULATE_ALL_MESSAGES is false and there are exactly two messages # (one user and one system), sum them both. request_user_system = [ m for m in all_messages if m.get("role") in ("user", "system") ] if len(request_user_system) == 2: request_messages = request_user_system else: # Otherwise, take only the last "user" or "system" message if any reversed_messages = list(reversed(all_messages)) last_user_system = next( ( m for m in reversed_messages if m.get("role") in ("user", "system") ), None, ) request_messages = [last_user_system] if last_user_system else [] request_token_count = sum( len(encoding.encode(self._get_message_content(m))) for m in request_messages if m ) return body def _get_message_content(self, message): """Extract content from a message, handling different formats.""" content = message.get("content", "") # Handle None content if content is None: content = "" # Handle string content if isinstance(content, str): return content # Handle list content (e.g., for messages with multiple content parts) if isinstance(content, list): text_parts = [] for part in content: if isinstance(part, dict): if part.get("type") == "text": text_parts.append(part.get("text", "")) else: # Try to convert other types to string try: text_parts.append(str(part)) except: pass return " ".join(text_parts) # Handle function_call in message if message.get("function_call"): try: func_call = message["function_call"] func_str = f"function: {func_call.get('name', '')}, arguments: {func_call.get('arguments', '')}" return func_str except: return "" # If nothing else works, try converting to string or return empty try: return str(content) except: return "" async def outlet( self, body: dict, __user__: Optional[dict] = None, __event_emitter__=None ) -> dict: log = logging.getLogger("time_token_tracker.outlet") log.setLevel(SRC_LOG_LEVELS["OPENAI"]) global start_time, request_token_count, response_token_count end_time = time.time() response_time = end_time - start_time model = body.get("model", "default-model") all_messages = body.get("messages", []) try: encoding = tiktoken.encoding_for_model(model) except KeyError: encoding = tiktoken.get_encoding("cl100k_base") reversed_messages = list(reversed(all_messages)) # If CALCULATE_ALL_MESSAGES is true, use all "assistant" messages if self.valves.CALCULATE_ALL_MESSAGES: assistant_messages = [ m for m in all_messages if m.get("role") == "assistant" ] else: # Take only the last "assistant" message if any last_assistant = next( (m for m in reversed_messages if m.get("role") == "assistant"), None ) assistant_messages = [last_assistant] if last_assistant else [] response_token_count = sum( len(encoding.encode(self._get_message_content(m))) for m in assistant_messages if m ) # Calculate tokens per second (only for the last assistant response) resp_tokens_per_sec = 0 if self.valves.SHOW_TOKENS_PER_SECOND: last_assistant_msg = next( (m for m in reversed_messages if m.get("role") == "assistant"), None ) last_assistant_tokens = ( len(encoding.encode(self._get_message_content(last_assistant_msg))) if last_assistant_msg else 0 ) resp_tokens_per_sec = ( 0 if response_time == 0 else last_assistant_tokens / response_time ) # Calculate averages only if CALCULATE_ALL_MESSAGES is true avg_request_tokens = avg_response_tokens = 0 if self.valves.SHOW_AVERAGE_TOKENS and self.valves.CALCULATE_ALL_MESSAGES: req_count = len( [m for m in all_messages if m.get("role") in ("user", "system")] ) resp_count = len([m for m in all_messages if m.get("role") == "assistant"]) avg_request_tokens = request_token_count / req_count if req_count else 0 avg_response_tokens = response_token_count / resp_count if resp_count else 0 # Shorter style, e.g.: "10.90s | Req: 175 (Ø 87.50) | Resp: 439 (Ø 219.50) | 40.18 T/s" description_parts = [] if self.valves.SHOW_RESPONSE_TIME: description_parts.append(f"{response_time:.2f}s") if self.valves.SHOW_TOKEN_COUNT: if self.valves.SHOW_AVERAGE_TOKENS and self.valves.CALCULATE_ALL_MESSAGES: # Add averages (Ø) into short output short_str = ( f"Req: {request_token_count} (Ø {avg_request_tokens:.2f}) | " f"Resp: {response_token_count} (Ø {avg_response_tokens:.2f})" ) else: short_str = f"Req: {request_token_count} | Resp: {response_token_count}" description_parts.append(short_str) if self.valves.SHOW_TOKENS_PER_SECOND: description_parts.append(f"{resp_tokens_per_sec:.2f} T/s") description = " | ".join(description_parts) # Send event with description await __event_emitter__( { "type": "status", "data": {"description": description, "done": True}, } ) # If Log Analytics integration is enabled, send the data if self.valves.SEND_TO_LOG_ANALYTICS: # Create chat and message IDs for tracking chat_id = body.get("chat_id", str(uuid.uuid4())) message_id = str(uuid.uuid4()) # User ID if available user_id = __user__.get("id", "unknown") if __user__ else "unknown" # Create log data for Log Analytics log_data = [ { "timestamp": datetime.datetime.utcnow().isoformat(), "chatId": chat_id, "messageId": message_id, "model": model, "userId": user_id, "responseTime": response_time, "requestTokens": request_token_count, "responseTokens": response_token_count, "tokensPerSecond": resp_tokens_per_sec, } ] # Add averages if calculated if self.valves.SHOW_AVERAGE_TOKENS and self.valves.CALCULATE_ALL_MESSAGES: log_data[0]["avgRequestTokens"] = avg_request_tokens log_data[0]["avgResponseTokens"] = avg_response_tokens # Send to Log Analytics asynchronously (non-blocking) try: result = await self._send_to_log_analytics_async(log_data) if result: log.info(f"Log Analytics data sent successfully") else: log.warning(f"Failed to send data to Log Analytics") except Exception as e: # Handle exceptions during sending to Log Analytics log.error(f"Error sending to Log Analytics: {e}") return body