Whitepaper
Docs
Sign In
Function
Function
pipe
v0.2
Grok Manifold Starficient
Function ID
grok_manifold_starficient
Creator
@khunt
Downloads
109+
Grok Manifold^: Make api calls to grok.com
Get
README
No README available
Function Code
Show
""" title: Grok Manifold ^ author: kha1n3vol3 author_url: https://github.com/kha1n3vol3/grok-manifold funding_url: https://www.starficient.com version: 0.2 """ """ Module: grok_pipe Description: This module implements a Pipe class for interacting with the Grok API. It provides functionality to fetch available models, process input messages (text and images), and handle both streaming and non-streaming API responses. The module uses Pydantic for configuration management and the requests library for HTTP communication. Usage: Initialize the Pipe class and use its methods to interact with the Grok API: >>> pipe = Pipe() >>> models = pipe.pipes() >>> response = pipe.pipe({"model": "grok-beta", "messages": [{"role": "user", "content": "Hello"}]}) Note: If GROK_API_KEY is not set, API requests may fail depending on server requirements. """ """ ████████ ████████ ████████ ████████ █ ████████ ███ ████████ █████ ████████ ███████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ ████████ Starficient ^ Above Efficient. """ import os import json import requests from typing import List, Union, Generator, Iterator, Optional, Dict from pydantic import BaseModel, Field from open_webui.utils.misc import ( pop_system_message, ) class Pipe: """ A class to manage interactions with the Grok API, including model retrieval and message processing. Attributes: valves (Pipe.Valves): Configuration settings for API interactions. type (str): Type identifier for the pipe. id (str): Unique identifier for the pipe instance. name (str): Name prefix for the pipe. """ class Valves(BaseModel): """ Configuration model for Grok API interactions using Pydantic. Attributes: GROK_API_KEY (str): API key for authentication with Grok services (optional). GROK_API_BASE_URL (str): Base URL for Grok API endpoints. MAX_TOKENS (int): Maximum number of tokens to generate in responses. TEMPERATURE (float): Sampling temperature for response generation. TOP_P (float): Nucleus sampling top_p value. STREAM (bool): Flag to enable streaming responses. """ GROK_API_KEY: str = Field(default="", description="API key for Grok services.") GROK_API_BASE_URL: str = Field( default="https://api.x.ai/v1", description="Base URL for Grok API endpoints.", ) MAX_TOKENS: int = Field( default=4096, description="Maximum number of tokens to generate." ) TEMPERATURE: float = Field(default=0.8, description="Sampling temperature.") TOP_P: float = Field(default=0.9, description="Nucleus sampling top_p value.") STREAM: bool = Field(default=False, description="Whether to stream responses.") def __init__(self) -> None: """ Initialize the Pipe instance with configuration from environment variables. """ self.valves = self.Valves( GROK_API_KEY=os.getenv("GROK_API_KEY", ""), GROK_API_BASE_URL=os.getenv("GROK_API_BASE_URL", "https://api.x.ai/v1"), ) self.type = "manifold" self.id = "grok" self.name = "grok/" self.session = requests.Session() # Reusable session for HTTP requests def get_model_id(self, model_name: str) -> str: """ Extract the base model name from a potentially formatted string. Args: model_name (str): The model name, possibly including prefixes or separators. Returns: str: The base model name (e.g., "grok-beta" from "prefix/grok-beta"). Example: >>> pipe = Pipe() >>> pipe.get_model_id("xai.grok-beta") 'grok-beta' """ parts = model_name.replace(".", "/").split("/") return parts[-1] if parts else "" def get_grok_models(self) -> List[Dict[str, str]]: """ Fetch available models from the Grok API. Returns: List[Dict[str, str]]: A list of dictionaries containing model IDs and names, empty if the request fails. Example: >>> pipe = Pipe() >>> models = pipe.get_grok_models() >>> print(models) [{'id': 'grok-beta', 'name': 'grok-beta'}, ...] """ headers = { "Authorization": f"Bearer {self.valves.GROK_API_KEY}", "Content-Type": "application/json", } try: response = self.session.get( f"{self.valves.GROK_API_BASE_URL}/models", headers=headers, timeout=10 ) response.raise_for_status() models_data = response.json() return [ {"id": model["id"], "name": model["id"]} for model in models_data.get("data", []) ] except requests.RequestException as e: print(f"Error fetching models: {e}") return [] def pipes(self) -> List[Dict[str, str]]: """ Retrieve the list of available Grok models. Returns: List[Dict[str, str]]: A list of model information dictionaries. """ return self.get_grok_models() def process_image( self, image_data: Dict[str, Dict[str, str]] ) -> Dict[str, Union[str, Dict]]: """ Process image data into a format suitable for the Grok API. Args: image_data (Dict[str, Dict[str, str]]): Image data containing a URL or base64 string. Returns: Dict[str, Union[str, Dict]]: Processed image data in API-compatible format, empty dict if processing fails. Example: >>> pipe = Pipe() >>> image = {"image_url": {"url": ""}} >>> pipe.process_image(image) {'type': 'image', 'source': {'type': 'base64', 'media_type': 'image/png', 'data': 'abc123'}} """ try: url = image_data.get("image_url", {}).get("url", "") if not url: return {} if url.startswith("data:image"): mime_type, base64_data = url.split(",", 1) media_type = mime_type.split(":")[1].split(";")[0] return { "type": "image", "source": { "type": "base64", "media_type": media_type, "data": base64_data, }, } return { "type": "image", "source": {"type": "url", "url": url}, } except (ValueError, IndexError): return {} def pipe(self, body: Dict) -> Union[str, Generator, Iterator]: """ Process input messages and interact with the Grok API. Args: body (Dict): Request body containing model, messages, and optional parameters. Returns: Union[str, Generator, Iterator]: Response content (string for non-streaming, generator/iterator for streaming), or error message. Example: >>> pipe = Pipe() >>> body = {"model": "grok-beta", "messages": [{"role": "user", "content": "Hi"}]} >>> response = pipe.pipe(body) 'Hello there!' """ system_message, messages = pop_system_message(body.get("messages", [])) processed_messages: List[Dict[str, str]] = [] for message in messages: if not isinstance(message, dict) or "role" not in message: continue if isinstance(message.get("content"), list): for item in message["content"]: if item.get("type") == "text" and item.get("text"): processed_messages.append( {"role": message["role"], "content": item["text"]} ) elif item.get("type") == "image_url": processed_image = self.process_image(item) if processed_image: processed_messages.append(processed_image) elif message.get("content"): processed_messages.append( {"role": message["role"], "content": str(message["content"])} ) if system_message: processed_messages.insert( 0, {"role": "system", "content": str(system_message)} ) model_id = self.get_model_id(body.get("model", "")) payload = { "model": model_id, "messages": processed_messages, "stream": body.get("stream", self.valves.STREAM), "temperature": body.get("temperature", self.valves.TEMPERATURE), "max_tokens": body.get("max_tokens", self.valves.MAX_TOKENS), "top_p": body.get("top_p", self.valves.TOP_P), "frequency_penalty": body.get("frequency_penalty", 0), "presence_penalty": body.get("presence_penalty", 0), "stop": body.get("stop", []), "user": body.get("user", ""), "n": body.get("n", 1), "logprobs": body.get("logprobs", False), "top_logprobs": body.get("top_logprobs", 0), } headers = { "Authorization": f"Bearer {self.valves.GROK_API_KEY}", "Content-Type": "application/json", } url = f"{self.valves.GROK_API_BASE_URL}/chat/completions" try: if payload["stream"]: return self.stream_response(url, headers, payload) return self.non_stream_response(url, headers, payload) except requests.RequestException as e: print(f"Error in pipe method: {e}") return f"Error: {e}" def stream_response( self, url: str, headers: Dict[str, str], payload: Dict ) -> Generator[str, None, None]: """ Handle streaming responses from the Grok API. Args: url (str): API endpoint URL. headers (Dict[str, str]): HTTP headers for the request. payload (Dict): Request payload. Yields: str: Incremental content from the streaming response. Example: >>> pipe = Pipe() >>> body = {"model": "grok-beta", "messages": [{"role": "user", "content": "Hi"}], "stream": True} >>> for chunk in pipe.pipe(body): ... print(chunk, end='') Hello there! """ with self.session.post( url, headers=headers, json=payload, stream=True, timeout=30 ) as response: if response.status_code != 200: raise Exception(f"HTTP Error {response.status_code}: {response.text}") for line in response.iter_lines(): if line: line_str = line.decode("utf-8") if line_str.startswith("data: "): try: data = json.loads(line_str[6:]) if data.get("choices") and "delta" in data["choices"][0]: content = data["choices"][0]["delta"].get("content", "") if content: yield content except json.JSONDecodeError as e: print(f"Failed to parse JSON: {e}") continue def non_stream_response( self, url: str, headers: Dict[str, str], payload: Dict ) -> str: """ Handle non-streaming responses from the Grok API. Args: url (str): API endpoint URL. headers (Dict[str, str]): HTTP headers for the request. payload (Dict): Request payload. Returns: str: The complete response content, or an error message if the request fails. """ response = self.session.post(url, headers=headers, json=payload, timeout=30) if response.status_code != 200: raise Exception(f"HTTP Error {response.status_code}: {response.text}") res = response.json() return res["choices"][0]["message"]["content"] if res.get("choices") else "" if __name__ == "__main__": # Example usage pipe = Pipe() body = {"model": "grok-beta", "messages": [{"role": "user", "content": "Hello"}]} response = pipe.pipe(body) print(response)