"""
title: Anthropic Manifold Pipe
authors: justinh-rahb and christian-taillon
author_url: https://github.com/justinh-rahb
funding_url: https://github.com/open-webui
version: 0.2.4
required_open_webui_version: 0.3.17
license: MIT
"""
import os
import requests
import json
import time
from typing import List, Union, Generator, Iterator
from pydantic import BaseModel, Field
from open_webui.utils.misc import pop_system_message
class Pipe:
class Valves(BaseModel):
ANTHROPIC_API_KEY: str = Field(default="")
def __init__(self):
self.type = "manifold"
self.id = "anthropic"
self.name = "anthropic/"
self.valves = self.Valves(
**{"ANTHROPIC_API_KEY": os.getenv("ANTHROPIC_API_KEY", "")}
)
self.MAX_IMAGE_SIZE = 5 * 1024 * 1024 # 5MB per image
pass
def get_anthropic_models(self):
return [
{"id": "claude-3-haiku-20240307", "name": "claude-3-haiku"},
{"id": "claude-3-opus-20240229", "name": "claude-3-opus"},
{"id": "claude-3-sonnet-20240229", "name": "claude-3-sonnet"},
{"id": "claude-3-5-haiku-20241022", "name": "claude-3.5-haiku"},
{"id": "claude-3-5-haiku-latest", "name": "claude-3.5-haiku"},
{"id": "claude-3-5-sonnet-20240620", "name": "claude-3.5-sonnet"},
{"id": "claude-3-5-sonnet-20241022", "name": "claude-3.5-sonnet"},
{"id": "claude-3-5-sonnet-latest", "name": "claude-3.5-sonnet"},
]
def pipes(self) -> List[dict]:
return self.get_anthropic_models()
def process_image(self, image_data):
"""Process image data with size validation."""
if image_data["image_url"]["url"].startswith("data:image"):
mime_type, base64_data = image_data["image_url"]["url"].split(",", 1)
media_type = mime_type.split(":")[1].split(";")[0]
# Check base64 image size
image_size = len(base64_data) * 3 / 4 # Convert base64 size to bytes
if image_size > self.MAX_IMAGE_SIZE:
raise ValueError(
f"Image size exceeds 5MB limit: {image_size / (1024 * 1024):.2f}MB"
)
return {
"type": "image",
"source": {
"type": "base64",
"media_type": media_type,
"data": base64_data,
},
}
else:
# For URL images, perform size check after fetching
url = image_data["image_url"]["url"]
response = requests.head(url, allow_redirects=True)
content_length = int(response.headers.get("content-length", 0))
if content_length > self.MAX_IMAGE_SIZE:
raise ValueError(
f"Image at URL exceeds 5MB limit: {content_length / (1024 * 1024):.2f}MB"
)
return {
"type": "image",
"source": {"type": "url", "url": url},
}
def pipe(self, body: dict) -> Union[str, Generator, Iterator]:
system_message, messages = pop_system_message(body["messages"])
processed_messages = []
total_image_size = 0
for message in messages:
processed_content = []
if isinstance(message.get("content"), list):
for item in message["content"]:
if item["type"] == "text":
processed_content.append({"type": "text", "text": item["text"]})
elif item["type"] == "image_url":
processed_image = self.process_image(item)
processed_content.append(processed_image)
# Track total size for base64 images
if processed_image["source"]["type"] == "base64":
image_size = len(processed_image["source"]["data"]) * 3 / 4
total_image_size += image_size
if (
total_image_size > 100 * 1024 * 1024
): # 100MB total limit
raise ValueError(
"Total size of images exceeds 100 MB limit"
)
else:
processed_content = [
{"type": "text", "text": message.get("content", "")}
]
processed_messages.append(
{"role": message["role"], "content": processed_content}
)
payload = {
"model": body["model"][body["model"].find(".") + 1 :],
"messages": processed_messages,
"max_tokens": body.get("max_tokens", 4096),
"temperature": body.get("temperature", 0.8),
"top_k": body.get("top_k", 40),
"top_p": body.get("top_p", 0.9),
"stop_sequences": body.get("stop", []),
**({"system": str(system_message)} if system_message else {}),
"stream": body.get("stream", False),
}
headers = {
"x-api-key": self.valves.ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01",
"content-type": "application/json",
}
url = "https://api.anthropic.com/v1/messages"
try:
if body.get("stream", False):
return self.stream_response(url, headers, payload)
else:
return self.non_stream_response(url, headers, payload)
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
return f"Error: Request failed: {e}"
except Exception as e:
print(f"Error in pipe method: {e}")
return f"Error: {e}"
def stream_response(self, url, headers, payload):
try:
with requests.post(
url, headers=headers, json=payload, stream=True, timeout=(3.05, 60)
) as response:
if response.status_code != 200:
raise Exception(
f"HTTP Error {response.status_code}: {response.text}"
)
for line in response.iter_lines():
if line:
line = line.decode("utf-8")
if line.startswith("data: "):
try:
data = json.loads(line[6:])
if data["type"] == "content_block_start":
yield data["content_block"]["text"]
elif data["type"] == "content_block_delta":
yield data["delta"]["text"]
elif data["type"] == "message_stop":
break
elif data["type"] == "message":
for content in data.get("content", []):
if content["type"] == "text":
yield content["text"]
time.sleep(
0.01
) # Delay to avoid overwhelming the client
except json.JSONDecodeError:
print(f"Failed to parse JSON: {line}")
except KeyError as e:
print(f"Unexpected data structure: {e}")
print(f"Full data: {data}")
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
yield f"Error: Request failed: {e}"
except Exception as e:
print(f"General error in stream_response method: {e}")
yield f"Error: {e}"
def non_stream_response(self, url, headers, payload):
try:
response = requests.post(
url, headers=headers, json=payload, timeout=(3.05, 60)
)
if response.status_code != 200:
raise Exception(f"HTTP Error {response.status_code}: {response.text}")
res = response.json()
return (
res["content"][0]["text"] if "content" in res and res["content"] else ""
)
except requests.exceptions.RequestException as e:
print(f"Failed non-stream request: {e}")
return f"Error: {e}"