"""
title: Nano GPT Image Gen
author: Elliott Groves
version: 1.0.1
date: 2024-09-27
description: Nano GPT Image Gen action button for openwebui.
author_url: https://github.com/Orciotrox/Nano-GPT.com_OpenWebUI
funding_url: https://github.com/Orciotrox/Nano-GPT.com_OpenWebUI
nano_address: nano_1pkmodta8fg8ti39pr1doe1mjbwo8cu3c9mt5u38d73d5t57d9nmgmnheifk
icon_url: 
"""
#Nano GPT Pipeline https://openwebui.com/f/elliott/nano_gpt/
#Integrates nano-gpt.com into OpenWebUI for seamless text-based AI tasks, like document retrieval and generation.
#Nano GPT Image Generation Button https://openwebui.com/f/elliott/nanoimages/
#Allows users to generate images from text prompts with nano-gpt.com.
#Nano GPT Receive Nano Button https://openwebui.com/f/elliott/nanogpt_receive_nano/
#Automates receiving Nano cryptocurrency through OpenWebUI for use with nano-gpt.com.
from pydantic import BaseModel, Field
from typing import Optional, List
import requests
import asyncio
class ImageModel(BaseModel):
id: str
name: str
description: str
cost: dict
maxImages: int
resolutions: list
engine: str
class Action:
class Valves(BaseModel):
NANO_GPT_API_KEY: str = Field(
default="Your Nano GPT API Key",
description="API key for authenticating requests to the Nano GPT API.",
)
NAME_PREFIX: str = Field(
default="NanoGPT-Image/",
description="Prefix to be added before model names.",
)
NANO_GPT_API_BASE_URL: str = Field(
default="https://nano-gpt.com/api",
description="Base URL for accessing Nano GPT API endpoints.",
)
def __init__(self):
self.valves = self.Valves()
self.models = []
async def fetch_models(self) -> List[ImageModel]:
try:
headers = {
"Authorization": f"Bearer {self.valves.NANO_GPT_API_KEY}",
"Content-Type": "application/json",
}
response = requests.get(
f"{self.valves.NANO_GPT_API_BASE_URL}/models", headers=headers
)
response.raise_for_status()
models = response.json().get("models", {}).get("image", {})
if not models:
return []
return [
ImageModel(
id=model_info.get("model"),
name=model_info.get("name", model_key),
description=model_info.get("description", ""),
cost=model_info.get("cost", {}),
maxImages=model_info.get("maxImages", 1),
resolutions=[res["value"] for res in model_info.get("resolutions", [])],
engine=model_info.get("engine", ""),
)
for model_key, model_info in models.items()
]
except requests.RequestException as e:
print(f"Request failed: {e}")
return []
async def action(self, body: dict, __user__=None, __event_emitter__=None, __event_call__=None) -> Optional[dict]:
print(f"action: {__name__}")
# Fetch available models
models = await self.fetch_models()
if not models:
print("No models available for selection.")
return
# Display model selection options
selection_text = "\n\n".join([f"{i + 1}. {model.name} - {model.description}" for i, model in enumerate(models)])
selection_data = {
"type": "input",
"data": {
"title": "Nano GPT Image Models",
"message": f"Input the number of the model you would like to use:\n\n{selection_text}",
"placeholder": selection_text,
},
}
try:
# Get user-selected model
selected_index = await __event_call__(selection_data)
if not selected_index or not (1 <= int(selected_index) <= len(models)):
print("Invalid model selection.")
return
selected_model = models[int(selected_index) - 1]
print(f"Selected Model: {selected_model.name}")
# Get image width
width_data = {
"type": "input",
"data": {
"title": "Image Width",
"message": "Enter the width of the image (default is 1024):",
"placeholder": "1024",
},
}
width = await __event_call__(width_data)
width = int(width) if width else 1024
# Get image height
height_data = {
"type": "input",
"data": {
"title": "Image Height",
"message": "Enter the height of the image (default is 1024):",
"placeholder": "1024",
},
}
height = await __event_call__(height_data)
height = int(height) if height else 1024
# Get prompt for image generation
prompt_data = {
"type": "input",
"data": {
"title": "Image Prompt",
"message": "Enter the prompt for image generation:",
"placeholder": "A beautiful landscape",
},
}
image_prompt = await __event_call__(prompt_data)
# Generate the image
response_data = self.generate_image(image_prompt, selected_model.id, width, height)
if not response_data or "data" not in response_data or not response_data["data"]:
raise Exception("No image data in the response")
image_data = response_data["data"][0].get("b64_json")
if not isinstance(image_data, str):
raise Exception("Invalid image data format")
content = f"![Generated Image](data:image/png;base64,{image_data})\n\n"
await __event_emitter__({"type": "message", "data": {"content": content}})
await __event_emitter__({"type": "image", "data": {"content": image_data}})
if __event_emitter__:
await __event_emitter__({"type": "status", "data": {"description": "Image Generated", "done": True}})
except Exception as e:
error_message = f"Error processing image: {e}"
print(error_message)
if __event_emitter__:
await __event_emitter__({"type": "status", "data": {"description": "Error Generating Image", "done": True}})
await __event_emitter__({"type": "message", "data": {"content": error_message}})
def generate_image(self, prompt, model_id, width, height):
data = {
"prompt": prompt,
"model": model_id,
"width": width,
"height": height,
}
headers = {
"x-api-key": self.valves.NANO_GPT_API_KEY,
"Content-Type": "application/json",
}
response = requests.post(
f"{self.valves.NANO_GPT_API_BASE_URL}/generate-image", headers=headers, json=data
)
if response.status_code == 200:
return response.json()
else:
print(f"Error Content: {response.text}")
return None